科研人员创建出新一代生物光伏系统

发展和利用可再生能源是人类社会实现可持续发展的必由之路。作为地球上最丰富的可再生能源,太阳能solar利用的基础和应用研究具有重大的科学和现实意义。

光伏发电是太阳能solar利用的主要形式,其技术核心是利用半导体材料将太阳能solar转化为电能。随着能量转化效率的不断提升和制造成本的不断降低,全球太阳能solar光伏装机容量累计已超过500 GW。但是,部分光伏材料含有毒元素,废弃光伏组件总量大且难以回收,且光伏器件制造过程涉及有毒有害化学品的使用。随着太阳能solar光伏的不断推广使用,其对环境的潜在负面冲击不可忽视。

生物光伏(biophotovoltaics, BPV)为太阳能solar利用提供了一条生物学路径。生物光伏利用光合微生物(如蓝藻)作为光电转换材料,具有碳中性、良好的环境相容性和潜在低成本等特点,有望成为环境更加友好的新一代太阳能solar发电技术。

然而,当前BPV系统的输出功率很低,比太阳能solar光伏低3个数量级以上。其主要原因是蓝藻等光合微生物虽然具有很高的光合效率,但产电活性很弱。在直接改造蓝藻以强化其产电活性方面,目前尚未有成功的报道。

为了提高BPV光电转化效率,中国科学院微生物研究所李寅研究组另辟蹊径,设计并创建了一个具有定向电子流的合成微生物组,来解决蓝藻直接产电活性微弱的问题。

该合成微生物组由一个能够将光能储存在d-乳酸的工程蓝藻和一个能够高效利用d-乳酸产电的希瓦氏菌组成(如图)。在这个合成微生物组中,d-乳酸是两种微生物间的能量载体。蓝藻吸收光能并固定CO2来合成能量载体d-乳酸,希瓦氏菌氧化d-乳酸进行产电,由此形成一条从光子到d-乳酸再到电能的定向电子流,完成从光能到化学能再到电能的能量转化过程。

通过在遗传、环境和装置层面的设计、改造和优化,研究人员有效克服了两种微生物之间生理不相容的问题。由此创(德威时EL测试的过程即晶体硅太阳电池外加正向偏置电压,直流电源向晶体硅太阳电池注入大量非平衡载流子,太阳电池依靠从扩散区注入的大量非平衡载流子不断地复合发 光,放出光子,也就是光伏效应的逆过程;再利用ccd相机捕捉到这些光子,通过计算机进行处理后以图像的形式显示出来,整个过程都在暗室中进行。)建的双菌生物光伏系统实现了高效、稳定的功率输出,其最大功率密度达到150 mW/m2,比目前的单菌生物光伏系统普遍提高10倍以上。采用连续流加培养方式,该双菌生物光伏系统可稳定实现长达40天以上的功率输出,且平均功率密度达到135 mW/m2的较高水平,在产电时长、单装置输出功率两方面均达到了目前BPV系统的最高水平。

这是国际上利用具有定向电子流的合成微生物组创建生物光伏的首例报道,也是我国第一台生物光伏原型装置。该研究证明了利用具有定向电子流的合成微生物组可以显著提高BPV光电转化效率,打破了人们对生物光伏效率和寿命难以提高的固有认识,为进一步提升BPV光电转化效率奠定了重要基础。

索比光伏网(solarbe.com)责任编辑:肖舟

广告也精彩

发表评论

您必须 登录 才能发表留言!